Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation

Identifieur interne : 00BD06 ( Main/Repository ); précédent : 00BD05; suivant : 00BD07

InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation

Auteurs : RBID : Pascal:04-0034496

Descripteurs français

English descriptors

Abstract

Hydrogen-induced exfoliation combined with wafer bonding has been used to transfer ∼600-nm-thick films of (100) InP to Si substrates. Cross-section transmission electron microscopy (TEM) shows a transferred crystalline InP layer with no observable defects in the region near the bonded interface and an intimately bonded interface. InP and Si are covalently bonded as inferred by the fact that InP/Si pairs survived both TEM preparation and thermal cycles up to 620°C necessary for metalorganic chemical vapor deposition growth. The InP transferred layers were used as epitaxial templates for the growth of InP/In0.53Ga0.47As/InP double heterostructures. Photoluminescence measurements of the In0.53Ga0.47As layer show that it is optically active and under tensile strain, due to differences in the thermal expansion between InP and Si. These are promising results in terms of a future integration of Si electronics with optical devices based on InP-lattice-matched materials. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0034496

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation</title>
<author>
<name sortKey="Fontcuberta I Morral, A" uniqKey="Fontcuberta I Morral A">A. Fontcuberta I Morral</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zahler, J M" uniqKey="Zahler J">J. M. Zahler</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Atwater, Harry A" uniqKey="Atwater H">Harry A. Atwater</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ahrenkiel, S P" uniqKey="Ahrenkiel S">S. P. Ahrenkiel</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wanlass, M W" uniqKey="Wanlass M">M. W. Wanlass</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0034496</idno>
<date when="2003-12-29">2003-12-29</date>
<idno type="stanalyst">PASCAL 04-0034496 AIP</idno>
<idno type="RBID">Pascal:04-0034496</idno>
<idno type="wicri:Area/Main/Corpus">00C195</idno>
<idno type="wicri:Area/Main/Repository">00BD06</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Elemental semiconductors</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Interface structure</term>
<term>MOCVD</term>
<term>Photoluminescence</term>
<term>Semiconductor growth</term>
<term>Semiconductor heterojunctions</term>
<term>Silicon</term>
<term>Transmission electron microscopy</term>
<term>VPE</term>
<term>Wafer bonding</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>6835C</term>
<term>8105E</term>
<term>8115G</term>
<term>8115K</term>
<term>6847F</term>
<term>7855C</term>
<term>7866F</term>
<term>6837L</term>
<term>6855A</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Silicium</term>
<term>Semiconducteur élémentaire</term>
<term>Hétérojonction semiconducteur</term>
<term>Fixation pastille</term>
<term>Microscopie électronique transmission</term>
<term>Structure interface</term>
<term>Méthode MOCVD</term>
<term>Epitaxie phase vapeur</term>
<term>Croissance semiconducteur</term>
<term>Photoluminescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hydrogen-induced exfoliation combined with wafer bonding has been used to transfer ∼600-nm-thick films of (100) InP to Si substrates. Cross-section transmission electron microscopy (TEM) shows a transferred crystalline InP layer with no observable defects in the region near the bonded interface and an intimately bonded interface. InP and Si are covalently bonded as inferred by the fact that InP/Si pairs survived both TEM preparation and thermal cycles up to 620°C necessary for metalorganic chemical vapor deposition growth. The InP transferred layers were used as epitaxial templates for the growth of InP/In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/InP double heterostructures. Photoluminescence measurements of the In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As layer show that it is optically active and under tensile strain, due to differences in the thermal expansion between InP and Si. These are promising results in terms of a future integration of Si electronics with optical devices based on InP-lattice-matched materials. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>83</s2>
</fA05>
<fA06>
<s2>26</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FONTCUBERTA I MORRAL (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZAHLER (J. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ATWATER (Harry A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AHRENKIEL (S. P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WANLASS (M. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>5413-5415</s1>
</fA20>
<fA21>
<s1>2003-12-29</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0034496</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Hydrogen-induced exfoliation combined with wafer bonding has been used to transfer ∼600-nm-thick films of (100) InP to Si substrates. Cross-section transmission electron microscopy (TEM) shows a transferred crystalline InP layer with no observable defects in the region near the bonded interface and an intimately bonded interface. InP and Si are covalently bonded as inferred by the fact that InP/Si pairs survived both TEM preparation and thermal cycles up to 620°C necessary for metalorganic chemical vapor deposition growth. The InP transferred layers were used as epitaxial templates for the growth of InP/In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/InP double heterostructures. Photoluminescence measurements of the In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As layer show that it is optically active and under tensile strain, due to differences in the thermal expansion between InP and Si. These are promising results in terms of a future integration of Si electronics with optical devices based on InP-lattice-matched materials. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H35C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B60H45</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B60A16B</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B80A15A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>6835C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8115K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>6847F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>6837L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>6855A</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur élémentaire</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Elemental semiconductors</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Fixation pastille</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Wafer bonding</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Structure interface</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Interface structure</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>VPE</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fN21>
<s1>019</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0451M000105</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00BD06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00BD06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0034496
   |texte=   InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024